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Goal

Additional insight into

1 Similarity of the 1860-1880 & 1910-1940 rises to 1970-2000.

2 The recent pause (2001-2013).

3 No sign of 3 ◦C per doubling of CO2.

Simple reasoning (no opaque models or sophisticated statistics).

Some applicable audiences:

Average reader of Scientific American, Discover, etc.

Decision makers—because complex reasoning may delay decisions.

Lawyers—because they have to talk to judges and juries.
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Part 1: Three Rises

Question: If the first two rises below are natural, why not the third?

Answer: They can be separated using land-sea difference.
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Land-Sea Difference

HadCRUT4 ≈ 0.3 LAND + 0.7 SEA (geographical weighting).

Consider instead LAND − SEA, specifically CRUTEM4 − HadSST3.
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Heat flow direction: The Copper Bar Gedankenexperiment

Heating copper bar at T1 end raises SUM(T1,T2) over time.
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Vaughan Pratt Stanford University Reconciling multidecadal land-sea global temperature with rising CO2 5 / 29



Heat flow direction: The Copper Bar Gedankenexperiment

SUM is not a diagnostic of direction, witness heating other end.
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Heat flow direction: The Copper Bar Gedankenexperiment

By Fourier’s law, flow T2 → T1 lowers DIFF(T1,T2).
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Heat flow direction: The Copper Bar Gedankenexperiment

Dually, flow T1 → T2 raises DIFF. So DIFF indicates direction.
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Heat flow direction: The Copper Bar Gedankenexperiment

Heating middle (or both ends) balances the flow. DIFF unchanged.
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Claims, rise by rise

Rise 1: Heat flow largely from sea to land.
Rise 2: Same, perhaps attenuated by a reverse flux (see Part 3).
Rise 3: Heat flow largely from land to sea (Part 3).
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Corollaries

1 At successive rises of land-sea sum, the corresponding trends of
land-sea difference shift gradually from strongly negative to strongly
positive.

2 The first two rises of the sum cannot be attributed to atmospheric
effects such as volcanic dimming, natural CO2 fluctuations, etc.
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Part 2: The pause

The “pause” at 2001-2013.

Downward trend of −0.2 ◦C/century.
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Spectral analysis

First stage: HadCRUT4 = LOW + MIDHIGH.

Filter: Low-pass Gaussian (G0) cutting off at 20 years (3σ).
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MID as the 20-year band

Second stage: MIDHIGH = MID + HIGH.

Filter: Band-pass Mexican hat (Ricker, G2) centered on 20 years.
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Significance of MID

MID is (a) robust and (b) phase-locked with the 20-year solar Hale cycle.

LOW: No pause expected. LOW+MID: Expect a pause.
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Corollaries

1 When MID is recognized as ongoing, the hiatus is consistent with
the steady recent rise of LOW (whatever its cause).

2 Santer et al’s requirement of 17 years on the minimum period
needed to detect a trend reliably is too high.

Santer treated MID as part of the unpredictable noise.
Treating it as a predictable signal
permits reducing the 17 year figure to the order of a decade.

3 Puzzle: Why no pause in 1980-1990?
This needs Part 3.
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Part 3. The missing climate sensitivity

Doubling CO2 will eventually raise the temperature 3 ◦C
(or whatever the Equilibrium Climate Sensitivity (ECS) actually is).

But what if the CO2 keeps rising?

Transient Climate Response, TCR, is the rise in temperature

during a doubling of CO2

while it is rising at 1%/yr (so 70 years to double).

Can we relate the two?

Proposal: ECS as delayed TCR.

Basis: The ocean as heat sink [Hansen et al 1985]

Quantify this as follows (several steps).
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Impact of Human CO2

Cumulative emissions and land use change since 1820.

CDIAC data, in units of GtC.
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Impact of Human CO2

Rescale GtC to ppmv: divide by 5.148*12/28.97 (matm, AWC , MWair ).

Then add 283 as estimate of pre-1820 atmospheric CO2.
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Impact of Human CO2

Mauna Loa observations since 1958 [Keeling]

Evidently not all emissions remained aloft.
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Impact of Human CO2

Firn air from Law Dome DSS ice core data (Australian)

Firn is preglacial ice packed sufficiently to trap air.
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Impact of Human CO2

Assume only 41% of emissions remain aloft.

Fits Mauna Loa well, Law Dome reasonably (19th C: 50%?).
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Impact of Human CO2

Arrhenius Law: LOGCO2 = log2(CO2/280). (Use CDIAC for CO2.)

Expected global warming @ climate sensitivity 1◦C/CO2 doubling.
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Fitting LOGCO2 to LOW

Introduce LOW as below. Coming up: fit LOGCO2 to it...

...in order to analyze LOW = AGW + RESIDUAL.
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Fitting LOGCO2 to LOW

Best fit at 1.93*LOGCO2.

LOW = 1.93 LOGCO2 + RESIDUAL
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A simple model of delayed response

Let LOGCO2d(y) = LOGCO2(y − d) (slide LOGCO2 right d years).

1.93 LOGCO220 fits LOW badly. Best fit is 2.77 LOGCO220.
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Prevailing climate sensitivity s(d)

The graph plots the relation s(d) obtained by fitting LOGCO2d to LOW
to determine s. s(d) ≈ 1.93 + 0.047d .

In particular s(25) ≈ 3. That is, a delay of 25 years entails a prevailing
climate sensitivity of about 3 ◦C per doubling of CO2.
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Identifying RESIDUAL with AMO

1. Part 1 shows AMO originates below sea surface (not volcanism).

2. Part 2 needs AMO to explain no pause in 1980-90.
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Conclusions

Our understanding of the CO2 control knob is consistent with

1 The natural rises up to 1940 (seems to be the ocean)

2 The hiatus (the Sun and the AMO together)

3 ECS of 3 ◦C/2xCO2 under a 25-year ocean delay.

Further points

Volcanos and El Nino/La Nina not necessary in this account.
By Occam’s Razor they should not be part of the explanation.
(Contrapositive: If they should be, that refutes Occam’s Razor.)

The more stable human influences besides CO2 are in LOW.
This confounds them with CO2, hence a major source of uncertainty.
For this reason they have been closely studied for decades.
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