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Additional insight into

© Similarity of the 1860-1880 & 1910-1940 rises to 1970-2000.
@ The recent pause (2001-2013).
© No sign of 3 °C per doubling of CO2.

Simple reasoning (no opaque models or sophisticated statistics).

Some applicable audiences:

@ Average reader of Scientific American, Discover, etc.
@ Decision makers—because complex reasoning may delay decisions.

@ Lawyers—because they have to talk to judges and juries.
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Part 1: Three Rises

Question: If the first two rises below are natural, why not the third?

Answer: They can be separated using land-sea difference.
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Land-Sea Difference

HadCRUT4 ~ 0.3 LAND + 0.7 SEA (geographical weighting).

Consider instead LAND — SEA, specifically CRUTEM4 — HadSST3.
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Heat flow direction: The Copper Bar Gedankenexperiment

Heating copper bar at T1 end raises SUM(T1,T2) over time.

T1+T2
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Heat flow direction: The Copper Bar Gedankenexperiment

SUM is not a diagnostic of direction, witness heating other end.

T1+T2
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Heat flow direction: The Copper Bar Gedankenexperiment

By Fourier's law, flow T2 — T1 lowers DIFF(T1,T2).

T1 -T2
\
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Heat flow direction: The Copper Bar Gedankenexperiment

Dually, flow T1 — T2 raises DIFF. So DIFF indicates direction.

T1—T2/
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Heat flow direction: The Copper Bar Gedankenexperiment

Heating middle (or both ends) balances the flow. DIFF unchanged.

T1 -T2
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Claims, rise by rise

Rise 1. Heat flow largely from sea to land.
Rise 2: Same, perhaps attenuated by a reverse flux (see Part 3).
Rise 3: Heat flow largely from land to sea (Part 3).
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Corollaries

@ At successive rises of land-sea sum, the corresponding trends of
land-sea difference shift gradually from strongly negative to strongly
positive.

@ The first two rises of the sum cannot be attributed to atmospheric
effects such as volcanic dimming, natural CO2 fluctuations, etc.
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Part 2: The pause

The “pause” at 2001-2013.

Downward trend of —0.2 °C/century.
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Spectral analysis

First stage: HadCRUT4 = LOW + MIDHIGH.

Filter: Low-pass Gaussian (Gp) cutting off at 20 years (30).
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MID as the 20-year band

Second stage: MIDHIGH = MID + HIGH.

Filter: Band-pass Mexican hat (Ricker, Gy) centered on 20 years.

HadCRUT4 = HIGH + MID + LOW
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Significance of MID

MID is (a) robust and (b) phase-locked with the 20-year solar Hale cycle.

LOW: No pause expected. LOW+MID: Expect a pause.

Expectation with LOW

Expectation with LOW+MID
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Corollaries

@ When MID is recognized as ongoing, the hiatus is consistent with
the steady recent rise of LOW (whatever its cause).

@ Santer et al's requirement of 17 years on the minimum period
needed to detect a trend reliably is too high.

o Santer treated MID as part of the unpredictable noise.
o Treating it as a predictable signal
permits reducing the 17 year figure to the order of a decade.

© Puzzle: Why no pause in 1980-19907
This needs Part 3.
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Part 3. The missing climate sensitivity

Doubling CO2 will eventually raise the temperature 3 °C
(or whatever the Equilibrium Climate Sensitivity (ECS) actually is).

But what if the CO2 keeps rising?

Transient Climate Response, TCR, is the rise in temperature

@ during a doubling of CO2
@ while it is rising at 1%/yr (so 70 years to double).

Can we relate the two?
Proposal: ECS as delayed TCR.
Basis: The ocean as heat sink [Hansen et al 1985]

Quantify this as follows (several steps).
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Impact of Human CO2

Cumulative emissions and land use change since 1820.

CDIAC data, in units of GtC.
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Impact of Human CO2

Rescale GtC to ppmv: divide by 5.148%12/28.97 (matm, AW, MW ;).

Then add 283 as estimate of pre-1820 atmospheric CO2.

550 —Fuel+Cement+Land use (CDIAC)

g
£ 500
[}

w
a
o

1820 1840 1860 1880 1900 1920 1940 1960 1980 2000
YEAR

Vaughan Pratt Stanford University Reconciling multidecadal land-sea global temg



Impact of Human CO2

Mauna Loa observations since 1958 [Keeling]

Evidently not all emissions remained aloft.
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Impact of Human CO2

Firn air from Law Dome DSS ice core data (Australian)

Firn is preglacial ice packed sufficiently to trap air.
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Impact of Human CO2

Assume only 41% of emissions remain aloft.

Fits Mauna Loa well, Law Dome reasonably (19th C: 50%7).
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Impact of Human CO2

Arrhenius Law: LOGCO2 = log,(C02/280). (Use CDIAC for CO2.)

Expected global warming @ climate sensitivity 1°C/CO2 doubling.
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Fitting LOGCO2 to LOW

Introduce LOW as below. Coming up: fit LOGCO?2 to it...

...in order to analyze LOW = AGW + RESIDUAL.
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Fitting LOGCO2 to LOW

Best fit at 1.93*LOGCO?2.

LOW = 1.93 LOGCO2 + RESIDUAL

[—AGW
—LOW
0.4 , AGW = 1.93 LOGCO2// -

_0.4 1 1 1 1 1 1 1 1 1
1820 1840 1860 1880 1900YI159A2F({) 1940 1960 1980 2000

Vaughan Pratt Stanford University Reconciling multidecadal land-sea global temg



A simple model of delayed response

Let LOGCO2,4(y) = LOGCO2(y — d) (slide LOGCO2 right d years).

1.93 LOGCO2y fits LOW badly. Best fit is 2.77 LOGCO2y.
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Prevailing climate sensitivity s(d)

The graph plots the relation s(d) obtained by fitting LOGCO24 to LOW
to determine s. s(d) ~ 1.93 + 0.047d.

In particular s(25) ~ 3. That is, a delay of 25 years entails a prevailing
climate sensitivity of about 3 °C per doubling of CO2.
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|dentifying RESIDUAL with AMO

1. Part 1 shows AMO originates below sea surface (not volcanism).

2. Part 2 needs AMO to explain no pause in 1980-90.

— Residual
—0.5 * AMO index (smoothed
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Conclusions

Our understanding of the CO2 control knob is consistent with

@ The natural rises up to 1940 (seems to be the ocean)
@ The hiatus (the Sun and the AMO together)
@ ECS of 3 °C/2xCO2 under a 25-year ocean delay.

Further points

Volcanos and El Nino/La Nina not necessary in this account.
By Occam’s Razor they should not be part of the explanation.
(Contrapositive: If they should be, that refutes Occam’s Razor.)

The more stable human influences besides CO2 are in LOW.
This confounds them with CO2, hence a major source of uncertainty.
For this reason they have been closely studied for decades.
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